Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

$\mathbf{G d}_{2} \mathrm{OSe}_{2}$

Olivier Tougait and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
Correspondence e-mail: ibers@chem.nwu.edu

Received 22 December 1999
Accepted 24 February 2000
Single crystals of digadolinium monooxygen diselenide, $\mathrm{Gd}_{2} \mathrm{OSe}_{2}$, have been obtained from a KBr flux. The compound is isostructural with the low-pressure form of $\mathrm{Dy}_{2} \mathrm{OS}_{2}$. All atoms lie on the mirror plane of Pnma. The Gd environments are $\mathrm{GdO}_{3} \mathrm{Se}_{5}$ bicapped trigonal prism and a GdOSe_{5} distorted octahedron. The two coordination polyhedra pack by face-sharing and edge-sharing to form a $\left[\mathrm{Gd}_{8 / 4} \mathrm{O}_{4 / 4} \mathrm{Se}_{8 / 8^{-}}^{a}\right.$ $\left.\mathrm{Se}_{8 / 8}^{i}\right]$ fragment, which is the main motif of the structure. These fragments lie in the ac plane and form infinite chains parallel to c through the sharing of Se atoms around atom Gd1. In the a direction, these chains stack through the sharing of an Se atom around atom Gd2, thereby delimiting large pentagonal cavities.

Comment

Rare-earth oxychalcogenides are of particular interest for their use as phosphors. Suitable material for efficient conversion of X-rays to light are $\mathrm{Gd}_{2} \mathrm{O}_{2} \mathrm{~S}$ doped with Tb and $\mathrm{Y}_{2} \mathrm{O}_{2} \mathrm{~S}$ doped with Eu.

Rare-earth monooxygen disulfides, ${L n_{2}}_{2} \mathrm{OS}_{2}$ ($L n=$ rare earth), exhibit two different structure types. The first is the $\mathrm{Tm}_{2} \mathrm{OS}_{2}$ structure type (monoclinic, $P 2_{1} / c$) adopted by Er, Tm, Yb (Range et al., 1990), Dy (Schleid, 1991), Y (Schleid, 1992) and Sm (Lissner \& Schleid, 1992). The crystal structure is built from the close packing of two mixed $\operatorname{Ln} Q_{7}(Q=\mathrm{O}, \mathrm{S})$ polyhedra and shows some similarities to the structures of rareearth sesquichalcogenides. The second is the low-temperature $\mathrm{Dy}_{2} \mathrm{OS}_{2}$ structure type (orthorhombic, Pnma) (Schleid, 1991). The title compound, $\mathrm{Gd}_{2} \mathrm{OSe}_{2}$, is isotypic to this second structure type and represents the first rare-earth monooxygen diselenide to be characterized by single-crystal X-ray crystallography.

A displacement ellipsoid diagram of $\mathrm{Gd}_{2} \mathrm{OSe}_{2}$ is shown in Fig. 1. $\mathrm{GdO}_{3} \mathrm{Se}_{5}$ bicapped trigonal prisms and GdOSe_{5} distorted octahedra pack by face-sharing and edge-sharing to form a $\left[\mathrm{Gd}_{8 / 4} \mathrm{O}_{4 / 4} \mathrm{Se}_{8 / 8}^{a} \mathrm{Se}_{8 / 8}^{i}\right]$ ($i=$ inner and $a=$ apical) fragment that constitutes the main building motif of the structure. These fragments, which lie in the ac plane, form infinite chains parallel to the c axis by sharing Se atoms around atom Gd1. In the a direction, these chains stack by sharing Se atoms around
atom Gd2, delimiting pentagonal cavities. In the b direction, the three-dimensional interconnection occurs via face-sharing of trigonal prisms and edge-sharing of octahedra.

Figure 1
View of the structure of $\mathrm{Gd}_{2} \mathrm{OSe}_{2}$ down b. Displacement ellipsoids are drawn at the 90% probability level.

Experimental

Single crystals of $\mathrm{Gd}_{2} \mathrm{OSe}_{2}$ were obtained as a side product of the reaction of $\mathrm{Gd}(0.290 \mathrm{~g}$, Alfa, $99.9 \%), \mathrm{TiO}_{2}(0.029 \mathrm{~g}$, Alfa, $99.9 \%)$, Ti (0.017 g , Alfa, 99.9%) and $\mathrm{Se}(0.228 \mathrm{~g}$, Alfa, 99.5%), with KBr (200 mg , Alfa, 99%) added to promote crystal growth. The materials were mixed and sealed in a fused-silica tube that was then evacuated to 10^{-4} Torr $(1$ Torr $=133.322 \mathrm{~Pa})$. The tube was heated to 1223 K for 4 d before being cooled to 973 K at the rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$ when the furnace was turned off. The final product was washed with methanol and water, and dried with acetone. Yellow single crystals of $\mathrm{Gd}_{2} \mathrm{OSe}_{2}$ of rod-like habit were found. Qualitative energy dispersive spectroscopy (EDS) analysis verified the presence of Gd, Se, and O.

Crystal data

[^0]> Mo $K \alpha$ radiation
> Cell parameters from 2878 \quad reflections
> $\theta=2.54-28.29^{\circ}$
> $\mu=45.78 \mathrm{~mm}^{-1}$
> $T=153(2) \mathrm{K}$
> Rod, pale yellow
> $0.240 \times 0.024 \times 0.022 \mathrm{~mm}$

Data collection

Bruker Smart 1000 CCD diffractometer
ω scans
Absorption correction: numerical (face indexed; SHELXTL/PC; Sheldrick, 1997)
$T_{\text {min }}=0.065, T_{\text {max }}=0.400$
3870 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.059$
$S=1.101$
623 reflections
32 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.04 F_{o}^{2}\right)^{2}\right]$

623 independent reflections
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=28.29^{\circ}$
$h=-20 \rightarrow 20$
$k=-5 \rightarrow 5$
$l=-9 \rightarrow 9$
Intensity decay: $<2 \%$

$(\Delta / \sigma)_{\max }<0.001$

$\Delta \rho_{\text {max }}=2.96 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.30 \mathrm{e}^{-3}$
Extinction correction:
SHELXTL/PC (Sheldrick, 1997)
Extinction coefficient: 0.0017 (2)

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 1997); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTLIPC.

Use was made of the scanning electron microscope facility supported by the US National Science Foundation through the Northwestern University Materials Research Center (grant DMR96-32472). This research was supported by the US

Table 1
Selected geometric parameters (\AA).

Gd1-O1	2.317 (6)	Gd2-O1	2.240 (5)
$\mathrm{Gd} 1-\mathrm{O} 1^{\text {i }}$	2.326 (3)	Gd2-Se2 ${ }^{\text {vi }}$	2.8183 (7)
$\mathrm{Gd} 1-\mathrm{O} 1^{\text {ii }}$	2.326 (3)	Gd2-Se2 ${ }^{\text {vii }}$	2.8183 (7)
$\mathrm{Gd} 1-\mathrm{Se} 2^{\text {iii }}$	3.0228 (10)	Gd2-Se1 ${ }^{\text {iv }}$	2.8642 (8)
$\mathrm{Gd} 1-\mathrm{Se} 2^{\text {iv }}$	3.0932 (8)	$\mathrm{Gd} 2-\mathrm{Se} 1^{\text {v }}$	2.8642 (8)
$\mathrm{Gd} 1-\mathrm{Se} 2^{\text {v }}$	3.0932 (8)	Gd2-Se1	2.9203 (10)
Gd1-Se1 ${ }^{\text {iv }}$	3.1726 (8)	Gd2 - Gd1 ${ }^{\text {i }}$	3.7968 (7)
Gd1-Se1 ${ }^{\text {v }}$	3.1726 (8)		

National Science Foundation under grant DMR97-09351. We acknowledge the assistance of Dr P. G. Jene.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1282). Services for accessing these data are described at the back of the journal.

References

Bruker (1999). SMART (Version 5.054) and SAINT-Plus (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Lissner, F. \& Schleid, T. (1992). Z. Naturforsch. Teil B, 47, 1614-1620.
Range, K.-J., Lange, K. G. \& Gietl, A. (1990). J. Less Common Met. 158, 137145.

Schleid, T. (1991). Z. Anorg. Allg. Chem. 602, 39-47.
Schleid, T. (1992). Eur. J. Solid State Inorg. Chem. 29, 1015-1028.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXTL/PC. Version 5.101. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: $\mathrm{Gd}_{2} \mathrm{OSe}_{2}$
 $M_{r}=488.42$
 Orthorhombic, Pnma
 $a=16.050$ (3) \AA
 $b=3.9375$ (8) \AA
 $c=7.0309(14) \AA$
 $V=444.32(15) \AA^{3}$
 $Z=4$
 $D_{x}=7.301 \mathrm{Mg} \mathrm{m}^{-3}$

